Powered by

Chemische Werkzeuge für biologische Anwendungen

Die Grenzen zwischen den traditionellen Fachbereichen verschwimmen in den modernen Naturwissenschaften immer mehr. Oft ist interdisziplinäre Zusammenarbeit notwendig, um komplexe Prozesse oder biomolekulare Fragestellungen zu untersuchen. Das ist auch der zentrale Aspekt der sogenannten Chemischen Biologie, die die Anwendung chemischer Stoffe, Methoden und Werkzeuge auf biologische Systeme und Fragestellungen beinhaltet. Die Möglichkeiten reichen dabei von der chemischen Synthese von biologisch wirksamen Stoffen bis hin zur gezielten chemischen Modifikation von Biomolekülen.

Die ganzheitliche Herangehensweise der Chemischen Biologie bietet im Bereich der Grundlagenforschung neue Ansätze, um biologische Vorgänge auf chemischer Ebene zu manipulieren und zu untersuchen. Dabei kommen häufig niedermolekulare Verbindungen, sogenannte „small molecules“ zum Einsatz, die mit Hilfe der Synthetischen Chemie gezielt designt oder in biochemischen und zellbasierten Screenings von großen Moleküldatenbanken identifiziert werden.

Die Molekülwerkzeuge können vielfältige Wirkungen auf Zellen und Proteine haben, beispielsweise spezifisch an aktive Proteine binden und so deren Aktivität nachweisen, die chemischen Eigenschaften eines Proteins verändern oder seine Lokalisation sichtbar machen. Sie können sowohl in vitro als auch in vivo eingesetzt werden und zeichnen sich vor allem durch ihre schnelle und oft reversible Wirkung aus, die eine langwierige Vorbereitung wie bei RNAi oder der genetischen Manipulation von Zellen überflüssig macht (s. Artikel „Chemische Werkzeuge für die Zellteilungsforschung“).

Solche funktionalen Moleküle sind natürlich auch für die Pharmaforschung sehr interessant. Eine Substanz, die sich in der Grundlagenforschung als Inhibitor für ein bestimmtes Zellteilungsprotein herausstellt, kann sich beispielsweise als potenzielles Krebstherapeutikum eignen, wenn das betreffende Protein in die Tumorentstehung involviert ist. Die Chemische Biologie hat damit auch eine große wirtschaftliche Relevanz.

Maßgeschneiderte Protein-Bausteine

In vielen Bereichen der Life Sciences gehört die Kombination von Methoden aus der Chemie und Biologie bereits zum Alltag. © Universität Konstanz

Ein weiteres Werkzeug der Chemischen Biologie sind die sogenannten nicht-natürlichen bzw. künstlichen Aminosäuren. Im Gegensatz zu den 20 kanonischen Aminosäuren, aus denen Proteine normalerweise aufgebaut werden, kommen diese künstlichen Aminosäuren in der Natur nicht vor, sondern werden im Labor erzeugt. Sie können dabei mit bestimmten chemischen Funktionen ausgestattet werden, beispielsweise einer Fluoreszenz-Markierung oder funktionellen Seitenketten, die sich mit anderen Molekülen verknüpfen lassen. Das macht sie zu einer Art Universalwerkzeug für Protein-Engineering, mit dem die vorhandenen Eigenschaften eines Proteins verändert und verbessert oder ganz neue Funktionen eingeführt werden können (s. Artikel „Marina Rubini erforscht mit Leidenschaft Proteinfaltung und -design“).

Meist werden zur Expression der künstlichen Aminosäuren Bakterien verwendet. Da es keine natürlichen Basentripletts gibt, die für diese Aminosäuren codieren, muss zuerst der genetische Code der Bakterien erweitert werden, um sie in die natürliche Proteinbiosynthese einzuschleusen. Das ist beispielsweise über die gezielte Unterdrückung eines Stopcodons in der mRNA möglich, sodass das entsprechende Basentriplett nicht das Ende der Proteintranslation bewirkt, sondern als Signal für den Einbau der gewünschten Aminosäure dient.

Um das zu ermöglichen, muss außer der künstlichen Aminosäure auch eine spezielle, passende Transfer-RNA (tRNA) als Adaptermolekül eingebracht werden, die den Einbau der Aminosäure am Ribosom vermittelt, sowie ihre zugehörige Aminoacyl-tRNA-Synthetase, die die tRNA mit der Aminosäure belädt. Durch Mutation der DNA-Sequenz können dann an den gewünschten Stellen Stopcodons erzeugt werden, sodass ein ortsspezifischer Einbau der nicht-kanonischen Aminosäure möglich ist (s. Artikel „Rotes Licht beleuchtet Regulationsmechanismen der Genexpression“).

Gezieltes Enzymdesign erzeugt neue Werkzeuge für die Biotechnologie

Interdisziplinäre Studiengänge und Forschungsprogramme ermöglichen eine Ausbildung jenseits von starren Fachbereichsgrenzen. © Universität Konstanz

Enzyme sind zentraler Bestandteil vieler Laboranwendungen und biotechnologischer Methoden, da sie den Ablauf bestimmter chemischer Reaktionen in biologischen Systemen oder auch im Reagenzglas katalysieren und damit oft erst möglich machen. Molekularbiologische Standardmethoden wie die Polymerasekettenreaktion, die Klonierung oder Produktion rekombinanter Proteine sind nur Beispiele für die Vielzahl möglicher Anwendungen.

So vielfältig die theoretischen Einsatzmöglichkeiten auch sind, so waren sie in der Vergangenheit doch meist durch die natürliche Variation der Enzyme beschränkt. Diese funktionieren oft nur unter den richtigen äußeren Bedingungen, zum Beispiel einer bestimmten Temperatur, oder setzen nur ein bestimmtes Substrat um.
„Die Natur hat Polymerasen nicht für moderne Anwendungen zum Beispiel in der molekularen Diagnostik evolviert“, erklärt Andreas Marx, Professor für Organische Chemie / Zelluläre Chemie und Koordinator der Graduiertenschule Chemische Biologie an der Universität Konstanz (s. Artikel „Andreas Marx - „Chemische Biologie“ der DNA-Polymerasen“).

Mit Hilfe der Kombination von molekularbiologischen und chemischen Methoden ist die Entwicklung neuer Enzyme aber durchaus möglich. Durch Mutagenese und Selektion oder molekulare Modellierung werden dabei maßgeschneiderte Enzyme für neuartige Anwendungen entwickelt, die beispielsweise komplexe Syntheseprozesse gezielt und unproblematisch im Labor ermöglichen (s. Artikel „Von der Struktur zum Mechanismus“).

Interdisziplinäre Studiengänge für die Forscher der nächsten Generation

Nicht nur in der Forschung, auch in der akademischen Ausbildung wird diese neue Orientierung der Wissenschaft zunehmend berücksichtigt. So bieten bereits einzelne Hochschulen in Baden-Württemberg entsprechend spezialisierte Bachelor- und Master-Studiengänge an, wie beispielsweise „Chemische Biologie“ am Karlsruher Institut für Technologie oder „Life Science“ an der Universität Konstanz. In Konstanz bildet die Chemische Biologie sogar einen Forschungsschwerpunkt der Universität, mit eigener Graduiertenschule für die Doktorandenausbildung sowie einem eigenen Forschungsgebäude (s. Artikel „Neues Zentrum für „Chemische Biologie“ in Konstanz“ und „Interdisziplinarität schon bei der Betreuung“).

Glossar

  • Aminosäuren sind die Bausteine der Proteine; es gibt insgesamt 20 verschiedene Aminosäuren in Proteinen.
  • Bakterien sind mikroskopisch kleine, einzellige Lebewesen, die zu den Prokaryoten gehören.
  • Eine Base ist ein Bestandteil von Nukleinsäuren. Es gibt vier verschiedene Basen: Adenin, Guanin (Purinabkömmlinge), Cytosin und Thymin bzw. Uracil (Pyrimidinabkömmlinge). In der RNA ersetzt Uracil Thymin.
  • Biotechnologie ist die Lehre aller Verfahren, die lebende Zellen oder Enzyme zur Stoffumwandlung und Stoffproduktion nutzen.
  • Desoxyribonukleinsäure (DNS / DNA) trägt die genetische Information. In den Chromosomen liegt sie als hochkondensiertes, fadenförmiges Molekül vor.
  • Eine DNA-Polymerase ist ein Enzym, das die Synthese von DNA nach einer DNA-Vorlage katalysiert (z. B. bei der Replikation). Sie wird vielfach in der Gentechnik zur In-vitro-Synthese von DNA-Stücken verwendet.
  • Enzyme sind Katalysatoren in der lebenden Zelle. Sie ermöglichen den Ablauf der chemischen Reaktionen des Stoffwechsels bei Körpertemperatur.
  • Ein Gen ist ein Teil der Erbinformation, der für die Ausprägung eines Merkmals verantwortlich ist. Es handelt sich hierbei um einen Abschnitt auf der DNA, der die genetische Information zur Synthese eines Proteins oder einer funktionellen RNA (z. B. tRNA) enthält.
  • Genexpression ist der Begriff für die Biosynthese eines Genprodukts (= Umsetzung der genetischen Information in Proteine). Sie erfolgt in der Regel als Transkription von DNA zu mRNA und anschließender Translation von mRNA zu Protein.
  • Ein Klon ist eine genetisch identische Kopie eines Lebewesens, die auf natürlichem Weg durch Teilung aus einer einzigen Zelle entsteht. Beispiele für natürliche Klone sind Bakterienkolonien auf der Ebene der Einzeller und Zwillinge auf der Ebene der mehrzelligen Organismen. Bei der gentechnischen Variante der Klonerzeugung, der sogenannten Klonierung, wird entweder DNA in vitro neu kombiniert und anschließend in Zellkulturen vermehrt oder es werden genetisch identische Zellen oder auch Lebewesen durch Transplatation eines Zellkerns einer Körperzelle in eine undifferenzierte Zelle (Eizelle, Stammzelle) erzeugt.
  • Mit dem Begriff Mutation wird jede Veränderung des Erbguts bezeichnet (z. B. Austausch einer Base; Umstellung einzelner DNA-Abschnitte, Einfügung zusätzlicher Basen, Verlust von Basen oder ganzen DNA-Abschnitten). Mutationen kommen ständig in der Natur vor (z. B. ausgelöst durch UV-Strahlen, natürliche Radioaktivität) und sind die Grundlage der Evolution.
  • Mit Mutagenese ist die Erzeugung von Mutationen gemeint, die u. a. durch UV-Licht oder andere Strahlung sowie zahlreiche Chemikalien ausgelöst werden.
  • Die Proteinbiosynthese ist die zelluläre Synthese von Proteinen. Sie besteht aus zwei Schritten: Die Transkription, d.h. das Anfertigen einer mRNA-Kopie des jeweiligen DNA-Abschnitts und der Translation, d.h. das Übersetzen der Basenabfolge auf der RNA in Aminosäuresequenzen des Proteins.
  • Proteine (oder auch Eiweiße) sind hochmolekulare Verbindung aus Aminosäuren. Sie übernehmen vielfältige Funktionen in der Zelle und stellen mehr als 50 % der organischen Masse.
  • Das Ribosom ist Protein-Nukleinsäurekomplex zur Proteinbiosynthese unter Verwendung von mRNA als Vorlage.
  • Die Ribonukleinsäure (Abk. RNS oder RNA) ist eine in der Regel einzelsträngige Nukleinsäure, die der DNA sehr ähnlich ist. Sie besteht ebenfalls aus einem Zuckerphosphat-Rückgrat sowie einer Abfolge von vier Basen. Allerdings handelt es sich beim Zuckermolekül um Ribose und anstelle von Thymin enthält die RNA die Base Uracil. Die RNA hat vielfältige Formen und Funktionen; sie dient z. B. als Informationsvorlage bei der Proteinbiosynthese und bildet das Genom von RNA-Viren.
  • Screening kommt aus dem Englischen und bedeutet Durchsiebung, Rasterung. Man versteht darunter ein systematisches Testverfahren, das eingesetzt wird, um innerhalb einer großen Anzahl von Proben oder Personen bestimmte Eigenschaften zu identifizieren. In der Molekularbiologie lässt sich so z.B. ein gewünschter Klon aus einer genomischen Bank herausfiltern.
  • Unter Selektion im biologischen Sinn versteht man die Auslese von Organismen aufgrund ihrer Merkmale. Dies kann einerseits durch natürliche Selektionsmechanismen ("survival of the fittest") im Zuge der Evolution geschehen. Unter künstlicher Selektion versteht man andererseits die Auslese von Organismen durch den Menschen, z.B. in der Zucht. Auch in der Gentechnik wird künstliche Selektion angewandt, um einen gentechnisch veränderten Organismus anhand neu eingebrachter Eigenschaften (z. B. Antibiotikaresistenz) zu identifizieren.
  • Die Transfer-RNA (t-RNA) ist eine RNA mit L-förmiger Raumstruktur, die in der Translationsphase der Proteinbiosynthese (Übersetzung des RNA-Codes in eine Aminosäuresequenz) als Adaptermolekül dient. Jede t-RNA verfügt dazu einerseits über eine Bindestelle für eine spezifische Aminosäure und andererseits über ein spezifisches Basentriplett, das sog. Anticodon, das komplementäre Codons auf der m-RNA erkennen und binden kann. Dadurch wird der Einbau der jeweils richtigen Aminosäure in das entstehende Protein sichergestellt.
  • Ein Basentriplett ist eine Abfolge von drei Nukleotiden innerhalb der DNA.
  • Ein Tumor ist eine Gewebsschwellung durch abnormales Zellwachstum, die gutartig oder bösartig sein kann. Gutartige (benigne) Tumore sind örtlich begrenzt, während Zellen bösartiger (maligner) Tumore abgesiedelt werden können und in andere Gewebe eindringen können, wo sie Tochtergeschwulste (Metastasen) verursachen.
  • Inhibitoren sind Stoffe, die chemische oder biologische Reaktionen verlangsamen oder verhindern.
  • Die Expression ist die Biosynthese eines Genprodukts (= Umsetzung der genetischen Information in Proteine). Sie erfolgt in der Regel als Transkription von DNA zu mRNA und anschließender Translation von mRNA zu Protein.
  • Molekular bedeutet: auf Ebene der Moleküle.
  • Ein Polymer ist eine aus gleichartigen Einheiten aufgebaute kettenartige oder verzweigte chemische Verbindung. Die meisten Kunststoffe sind Polymere auf Kohlenstoffbasis.
  • Als Fluoreszenz wird die spontane Emission von Licht bestimmter Wellenlänge nach Anregung eines Moleküls mit Licht einer anderen Wellenlänge bezeichnet.
  • Messenger-RNA (Abk.: mRNA) ist eine Ribonukleinsäure, die eine Kopie eines kurzen DNA-Stücks darstellt und als Vorlage für die Synthese eines spezifischen Proteins dient.

Glossar

  • Aminosäuren sind die Bausteine der Proteine; es gibt insgesamt 20 verschiedene Aminosäuren in Proteinen.
  • Bakterien sind mikroskopisch kleine, einzellige Lebewesen, die zu den Prokaryoten gehören.
  • Eine Base ist ein Bestandteil von Nukleinsäuren. Es gibt vier verschiedene Basen: Adenin, Guanin (Purinabkömmlinge), Cytosin und Thymin bzw. Uracil (Pyrimidinabkömmlinge). In der RNA ersetzt Uracil Thymin.
  • Biotechnologie ist die Lehre aller Verfahren, die lebende Zellen oder Enzyme zur Stoffumwandlung und Stoffproduktion nutzen.
  • Desoxyribonukleinsäure (DNS / DNA) trägt die genetische Information. In den Chromosomen liegt sie als hochkondensiertes, fadenförmiges Molekül vor.
  • Eine DNA-Polymerase ist ein Enzym, das die Synthese von DNA nach einer DNA-Vorlage katalysiert (z. B. bei der Replikation). Sie wird vielfach in der Gentechnik zur In-vitro-Synthese von DNA-Stücken verwendet.
  • Enzyme sind Katalysatoren in der lebenden Zelle. Sie ermöglichen den Ablauf der chemischen Reaktionen des Stoffwechsels bei Körpertemperatur.
  • Ein Gen ist ein Teil der Erbinformation, der für die Ausprägung eines Merkmals verantwortlich ist. Es handelt sich hierbei um einen Abschnitt auf der DNA, der die genetische Information zur Synthese eines Proteins oder einer funktionellen RNA (z. B. tRNA) enthält.
  • Genexpression ist der Begriff für die Biosynthese eines Genprodukts (= Umsetzung der genetischen Information in Proteine). Sie erfolgt in der Regel als Transkription von DNA zu mRNA und anschließender Translation von mRNA zu Protein.
  • Ein Klon ist eine genetisch identische Kopie eines Lebewesens, die auf natürlichem Weg durch Teilung aus einer einzigen Zelle entsteht. Beispiele für natürliche Klone sind Bakterienkolonien auf der Ebene der Einzeller und Zwillinge auf der Ebene der mehrzelligen Organismen. Bei der gentechnischen Variante der Klonerzeugung, der sogenannten Klonierung, wird entweder DNA in vitro neu kombiniert und anschließend in Zellkulturen vermehrt oder es werden genetisch identische Zellen oder auch Lebewesen durch Transplatation eines Zellkerns einer Körperzelle in eine undifferenzierte Zelle (Eizelle, Stammzelle) erzeugt.
  • Mit dem Begriff Mutation wird jede Veränderung des Erbguts bezeichnet (z. B. Austausch einer Base; Umstellung einzelner DNA-Abschnitte, Einfügung zusätzlicher Basen, Verlust von Basen oder ganzen DNA-Abschnitten). Mutationen kommen ständig in der Natur vor (z. B. ausgelöst durch UV-Strahlen, natürliche Radioaktivität) und sind die Grundlage der Evolution.
  • Mit Mutagenese ist die Erzeugung von Mutationen gemeint, die u. a. durch UV-Licht oder andere Strahlung sowie zahlreiche Chemikalien ausgelöst werden.
  • Die Proteinbiosynthese ist die zelluläre Synthese von Proteinen. Sie besteht aus zwei Schritten: Die Transkription, d.h. das Anfertigen einer mRNA-Kopie des jeweiligen DNA-Abschnitts und der Translation, d.h. das Übersetzen der Basenabfolge auf der RNA in Aminosäuresequenzen des Proteins.
  • Proteine (oder auch Eiweiße) sind hochmolekulare Verbindung aus Aminosäuren. Sie übernehmen vielfältige Funktionen in der Zelle und stellen mehr als 50 % der organischen Masse.
  • Die Rekombination ist der Vorgang, bei dem DNA neu kombiniert wird. Als natürlicher Prozess findet Rekombination bei der geschlechtlichen Vermehrung während der Meiose statt. Bei der In-vitro-Rekombination werden mit Hilfe molekulargenetischer Methoden DNA-Abschnitte unterschiedlicher Herkunft miteinander verknüpft.
  • Das Ribosom ist Protein-Nukleinsäurekomplex zur Proteinbiosynthese unter Verwendung von mRNA als Vorlage.
  • Die Ribonukleinsäure (Abk. RNS oder RNA) ist eine in der Regel einzelsträngige Nukleinsäure, die der DNA sehr ähnlich ist. Sie besteht ebenfalls aus einem Zuckerphosphat-Rückgrat sowie einer Abfolge von vier Basen. Allerdings handelt es sich beim Zuckermolekül um Ribose und anstelle von Thymin enthält die RNA die Base Uracil. Die RNA hat vielfältige Formen und Funktionen; sie dient z. B. als Informationsvorlage bei der Proteinbiosynthese und bildet das Genom von RNA-Viren.
  • Screening kommt aus dem Englischen und bedeutet Durchsiebung, Rasterung. Man versteht darunter ein systematisches Testverfahren, das eingesetzt wird, um innerhalb einer großen Anzahl von Proben oder Personen bestimmte Eigenschaften zu identifizieren. In der Molekularbiologie lässt sich so z.B. ein gewünschter Klon aus einer genomischen Bank herausfiltern.
  • Unter Selektion im biologischen Sinn versteht man die Auslese von Organismen aufgrund ihrer Merkmale. Dies kann einerseits durch natürliche Selektionsmechanismen ("survival of the fittest") im Zuge der Evolution geschehen. Unter künstlicher Selektion versteht man andererseits die Auslese von Organismen durch den Menschen, z.B. in der Zucht. Auch in der Gentechnik wird künstliche Selektion angewandt, um einen gentechnisch veränderten Organismus anhand neu eingebrachter Eigenschaften (z. B. Antibiotikaresistenz) zu identifizieren.
  • Nukleotidsequenzen sind Abfolgen der Basen Adenin, Thymin, Guanin und Cytosin auf der DNA (bzw. Uracil statt Thymin bei RNA).
  • Die Transfer-RNA (t-RNA) ist eine RNA mit L-förmiger Raumstruktur, die in der Translationsphase der Proteinbiosynthese (Übersetzung des RNA-Codes in eine Aminosäuresequenz) als Adaptermolekül dient. Jede t-RNA verfügt dazu einerseits über eine Bindestelle für eine spezifische Aminosäure und andererseits über ein spezifisches Basentriplett, das sog. Anticodon, das komplementäre Codons auf der m-RNA erkennen und binden kann. Dadurch wird der Einbau der jeweils richtigen Aminosäure in das entstehende Protein sichergestellt.
  • Ein Basentriplett ist eine Abfolge von drei Nukleotiden innerhalb der DNA.
  • Ein Tumor ist eine Gewebsschwellung durch abnormales Zellwachstum, die gutartig oder bösartig sein kann. Gutartige (benigne) Tumore sind örtlich begrenzt, während Zellen bösartiger (maligner) Tumore abgesiedelt werden können und in andere Gewebe eindringen können, wo sie Tochtergeschwulste (Metastasen) verursachen.
  • Inhibitoren sind Stoffe, die chemische oder biologische Reaktionen verlangsamen oder verhindern.
  • Biochemie ist die Lehre von den chemischen Vorgängen in Lebewesen und liegt damit im Grenzbereich zwischen Chemie, Biologie und Physiologie.
  • Die Molekularbiologie beschäftigt sich mit der Struktur, Biosynthese und Funktion von DNA und RNA und und deren Interaktion miteinander und mit Proteinen. Mit Hilfe von molekularbiologischen Daten ist es zum Beispiel möglich, die Ursache von Krankheiten besser zu verstehen und die Wirkungsweise von Medikamenten zu optimieren.
  • Die Expression ist die Biosynthese eines Genprodukts (= Umsetzung der genetischen Information in Proteine). Sie erfolgt in der Regel als Transkription von DNA zu mRNA und anschließender Translation von mRNA zu Protein.
  • Molekular bedeutet: auf Ebene der Moleküle.
  • Ein Polymer ist eine aus gleichartigen Einheiten aufgebaute kettenartige oder verzweigte chemische Verbindung. Die meisten Kunststoffe sind Polymere auf Kohlenstoffbasis.
  • Als Fluoreszenz wird die spontane Emission von Licht bestimmter Wellenlänge nach Anregung eines Moleküls mit Licht einer anderen Wellenlänge bezeichnet.
  • Messenger-RNA (Abk.: mRNA) ist eine Ribonukleinsäure, die eine Kopie eines kurzen DNA-Stücks darstellt und als Vorlage für die Synthese eines spezifischen Proteins dient.
Seiten-Adresse: https://www.biooekonomie-bw.de/de/fachbeitrag/dossier/chemische-werkzeuge-fuer-biologische-anwendungen/