Powered by

Biobased resources

A major goal of the bioeconomy is to use larger quantities of biobased raw materials to produce energy, transport fuels and feedstock for industrial processes. This requires detailed analyses, simulations, concepts and processes. Major focus needs to be placed on issues relating to crop production, biomass potentials, land surface requirements, conversion technologies, biobased value creation networks and food security. Agriculture, forestry, waste management and the industry in general will need to work in concert as far as the raw materials all of them use or deal with are concerned.

  • Article - 13-Mar-2017

    Wood from local forests is an important resource for the bioeconomy. However at present, a large amount of wood is used as fuel for energy production. Greater forest diversity and new wood-based materials have the potential to make the timber industry more sustainable. The bioeconomy can contribute to this by promoting the utilisation of deciduous trees.

  • Article - 13-Mar-2017

    Biogas plants have become a familiar sight in Baden-Württemberg's rural areas. It might therefore be expected that broad experience exists in the comprehensive evaluation of this type of energy generation from renewable resources or organic materials. However, scientists draw a very differentiated picture. It is difficult to make any generalisations, although the analysis of individual facets can provide further help.

  • Article - 06-Mar-2017

    Along with cellulose, lignin is one of the most common organic compounds on earth. Researchers from the Fraunhofer Institute for Chemical Technology ICT are working on optimising the yield of aromatic platform chemicals using innovative sustainable processes for the extraction and fractionation of lignin. The ultimate goal is to provide an alternative to petroleum in the pharmaceutical, plastics and food industries.

  • Article - 07-Feb-2017

    Agroforestry systems can provide effective protection against soil erosion caused by wind and water. They can also contribute to stabilising and improving the yield of annual plants. In addition, strips in fields planted with shrubs and trees form living spaces and areas to which plants and animals can retreat. In the AUFWERTEN innovation group, the Fraunhofer Institute for Industrial Engineering IAO is working with other German research institutions and organisations to set up agroforestry systems in Germany.

  • Article - 30-Jan-2017

    Biotensidon GmbH is on the up. Rhapynal is about to be placed on the market. The company is involved in a 100-million-euro joint venture and was nominated for the German Next Economy Award in 2016. Rhapynal has three components and offers virtually unlimited possibilities for application in the agricultural, pharmaceutical and many other sectors.

  • Article - 18-Jan-2017

    In 2015, almost a third of Germany's electricity came from wind, sun and biomass. We need to continue reducing CO2 emissions to become even less dependent on fossil fuels such as coal and petroleum, and thus make electricity generation even more climate friendly. Baden-Württemberg has set an ambitious target for the shift in direction from nuclear and fossil fuels to renewable energy sources: reducing current energy consumption by 50% and replacing 80% of the energy used with energy generated from renewable sources, thus reducing greenhouse gas emissions by 90%.

  • Article - 12-Jan-2017

    The efficient recycling of biowaste makes an enormous contribution to the bioeconomy and climate protection. Researchers in the Department of Waste Management and Emissions headed up by Prof. Dr.-Ing. Martin Kranert at the Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA) at the University of Stuttgart, are exploring the optimisation potential of biowaste recovery.

  • Article - 07-Dec-2016

    Insects have an external skeleton composed mainly of chitin. Chitin is a long-chain polysaccharide with functional groups that make it a valuable biopolymer for a broad range of applications. Chitin is an almost inexhaustible resource, as it is constantly produced in huge quantities throughout nature. Researchers from the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) and six cooperation partners are working on developing a biotechnological method for making insect chitin usable for coating textiles.

Website address: https://www.biooekonomie-bw.de/en/articles/biobased-resources/