Powered by

Materials and chemicals

Biomass can be used to produce chemicals, fibres, pigments and plastics. These products are either identical to their petroleum-based counterparts or have completely new properties. Biorefineries will play a key role in the transition to a bioeconomy. There is great expectation placed on the potential ability to convert the countless carbon compounds in biomass into chemicals and material components.

  • Article - 30-Jan-2019

    Industry has been using enzymes for over a hundred years. While it initially had to content itself with natural enzymes, it is now increasingly possible to design tailor-made biocatalysts with specific properties. The start-up company candidum GmbH from Stuttgart promises to achieve this faster than ever before - mostly thanks to accelerated virtual screening.

  • Article - 07-Dec-2016

    Insects have an external skeleton composed mainly of chitin. Chitin is a long-chain polysaccharide with functional groups that make it a valuable biopolymer for a broad range of applications. Chitin is an almost inexhaustible resource, as it is constantly produced in huge quantities throughout nature. Researchers from the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) and six cooperation partners are working on developing a biotechnological method for making insect chitin usable for coating textiles.

  • Article - 24-Nov-2016

    It’s a great idea: everyday products that can repair themselves. Although it’s still a pipedream, the foundations are already being laid in a series of investigations being carried out by Dr. Olga Speck from the University of Freiburg. Dr. Speck is a botanist who is studying wound-healing reactions in plants to try and find mechanisms that can be used as models for developing materials with “self-healing powers”.

  • Article - 12-Sep-2016

    In the EU alone, more than 250,000 tons of seashell waste are discarded every year. The exoskeleton of crustaceans consists of proteins, calcium carbonate and chitin, a long-chain sugar molecule which could be used to produce valuable building blocks for the polymer industry. Scientists from the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) in Stuttgart have developed a biotechnological process aimed at a sustainable use of this type of waste in the future.

  • Article - 19-May-2016

    BBW ForWerts, the graduate programme within Baden-Württemberg’s strategic Bioeconomy Research Programme, offers PhD students a three-year interdisciplinary curriculum to work on their own research project and gain insights into other bioeconomy-related research priorities. The interdisciplinary approach, which also includes working with industrial partners and research institutions, provides students with the knowledge required for making the structural shift to a sustainable biobased economy and dealing with the associated challenges.

  • Article - 19-Apr-2016

    Some time ago, thanks to BIOPRO Baden-Württemberg, the biotechnology company Novis GmbH met Prof. Dr. Andreas Kappler, a renowned geomicrobiologist at the University of Tübingen.The two partners went on to test bioleaching methods for their ability to recover metals from slag using bacteria. In an interview with Dr. Thomas Helle, CEO of Novis GmbH, Dr. Ursula Göttert, on behalf of BIOPRO, asked what has become of the project.

  • Article - 08-Jun-2015

    In early 2015, a company called Biotensidon GmbH from Karlsruhe established a white biotechnology subsidiary to develop a fermenter prototype for producing rhamnolipids, which are excellent bacterial surfactants. The project, which was carried out in cooperation with scientists from the Science & Technology Center in Ukraine, means that traditional petroleum-based surfactants can now be replaced by biosurfactants. The latter are extremely versatile and 100% biodegradable.

  • Article - 04-May-2015

    Every single biotechnological production process is tested in shake flasks before it is gradually scaled up to eventually produce tons of platform chemicals or biofuels in cubic-metre sized fermenters. Prof. Dr. Sybille Ebert teaches the theory and practice of bioprocess engineering in the form of lectures and practical laboratory exercises to students at the Biberach University of Applied Sciences. The trained chemist and mathematician was appointed to the endowed chair of process engineering in biotechnology in summer 2013. The professorship is part of the university’s Industrial Biotechnology bachelor degree course.

Website address: https://www.biooekonomie-bw.de/en/articles/materials/