Press release - 21/07/2023 Biosurfactants might offer an environmentally friendly solution for tackling oil spills Can biosurfactants increase microbiological oil degradation in North Sea seawater? An international research team from the universities of Stuttgart und Tübingen, together with the China West Normal University and the University of Georgia, have been exploring this question and the results have revealed the potential for a more effective and environmentally friendly oil spill response.https://www.biooekonomie-bw.de/en/articles/pm/biosurfactants-might-offer-environmentally-friendly-solution-tackling-oil-spills
Press release - 08/12/2022 Tübingen Environmental Researcher Lars Angenent Receives the Leibniz Prize Tübingen biotechnologist Lars Angenent is being awarded the Leibniz Prize by the German Research Foundation (DFG) in appreciation of his outstanding work in the field of environmental biotechnology, it was announced in Bonn on Thursday. The DFG said: “In view of climate change and the resulting need to develop a sustainable food, chemistry and energy economy, his work is highly relevant.”https://www.biooekonomie-bw.de/en/articles/pm/tuebingen-environmental-researcher-lars-angenent-receives-leibniz-prize
Mini-factories for producing bioplastics - 05/05/2022 Bacteria produce bioplastics: resource-saving and very environmentally friendly Using living cells as mini-factories to produce plastic from nothing more than water, sunlight and carbon dioxide; plastic that is also 100 percent degradable – it sounds far-fetched but it actually works: researchers at the University of Tübingen have genetically engineered cyanobacteria so that they fill their cells to the brim with polyhydroxybutyrate. The researchers are now turning the idea into reality with the development of pilot plants.https://www.biooekonomie-bw.de/en/articles/news/bacteria-produce-bioplastics-resource-saving-and-very-environmentally-friendly
pre-start-up company Wheyfinery - 13/04/2022 Acid whey as a valuable raw material for platform chemicals and more There is not much you can do with acid whey, which is why several million litres of it are disposed of every year. This is both costly and not sustainable. However, researchers at Tübingen University have shown: acid whey can be used to produce precursors for biofuels, fine chemicals and antimicrobial livestock feed additives. They have set up the pre-start-up company Wheyfinery in an endeavour to make their scalable biorefinery concept…https://www.biooekonomie-bw.de/en/articles/news/acid-whey-valuable-raw-material-platform-chemicals-and-more
Press release - 15/06/2021 Bioeconomy: Taking Microbes out of Dark and into the Light Microorganisms are the oldest, most abundant, and most diverse life forms on earth and offer enormous potential for biotechnological applications. To date, however, only a fraction of them could be isolated and cultivated. The “MicroMATRIX” research project, funded with € 1.5 million by the German Federal Ministry of Education and Research and led by Karlsruhe Institute of Technology (KIT), aims to shed more light on the microbial darkness.https://www.biooekonomie-bw.de/en/articles/pm/biooekonomie-von-der-wg-ins-mikroben-eigenheim
Press release - 02/02/2021 Cyanobacteria could revolutionize the plastic industry Microbiologists at the University of Tübingen modify bacteria to produce climate-neutral and rapidly degradable bioplastics.https://www.biooekonomie-bw.de/en/articles/pm/Cyanobacteria-could-revolutionize-the-plastic-industry
Natural substance with herbicide potential - 10/12/2020 The same but different: What makes sugar 7Sdh a better herbicide? The sugar 7-deoxy-sedoheptulose (7dSh) is produced by cyanobacteria and inhibits the same metabolic pathway as the broad-spectrum herbicide glyphosate, thus making it an excellent herbicide candidate. Despite this amazing similarity, the microbiologist who discovered 7dSh, Prof. Dr. Karl Forchhammer, believes that this sugar has clear ecological advantages over glyphosate.https://www.biooekonomie-bw.de/en/articles/news/The-same-but-different-what-makes-sugar-7Sdh-a-better-herbicide
Article - 02/04/2019 Simple sugar could soon compete with glyphosate For many decades, glyphosate has been a common component of agricultural pesticides worldwide, although it is a controversial herbicide that may be harmful. The good news is that a more sustainable alternative is now in sight: researchers from the University of Tübingen have discovered a sugar molecule called 7-deoxy-sedoheptulose (7dSh) which inhibits the growth of plants and microorganisms, but appears to be completely harmless to human cells.https://www.biooekonomie-bw.de/en/articles/news/simple-sugar-could-soon-compete-with-glyphosate
Dossier - 01/10/2012 Systems biology understanding complex biological systems Systems biology studies complex interactions within biological systems on the genome proteome and organelle level. Many techniques from the fields of systems theory and associated fields can be used to gain an understanding of the behaviour and biological mechanisms of cellular systems.https://www.biooekonomie-bw.de/en/articles/dossiers/systems-biology-understanding-complex-biological-systems