Jump to content
Powered by
  • BIOPRO BW
  • Healthcare industry
  • Bioeconomy

Bioeconomy

Main navigation

  • Start page
  • Bioeconomy in BW

    Bioeconomy in BW

    Close
    • What is a bioeconomy?
      • Perspectives on the bioeconomy
      • Processes and technologies in the bioeconomy
      • Bioeconomy products
    • Bioeconomy in BW
      • Start-up funding
    • Bioeconomy stakeholders in BW
      • BW and its companies
      • BW and its researchers
      • BW and its networks
  • Articles

    Articles

    Close
    • News
    • Press releases
    • Dossiers
    • Biobased resources
    • Bioenergy
    • Materials and chemicals
    • Politics, ethics & economy
    • Environmental analytics
    • Publications
  • Events

    Events

    Close
  • Databases

    Databases

    Close
    • Funding
    • Research institutions
  • BIOPRO services

    BIOPRO services

    Close
    • Information channels
    • Contacts
    • BIOPRO services and offers
  • de
  • en
Show menu

You are here:

  1. Home
  2. Search
Show:Results per page
  • 25Show results
  • 50Show results
  • 75Show results

Search Results

  • Press release - 20/12/2022

    Strong and biodegradable

    A polyester plastic of great mechanical stability, which is also easily recyclable and even compostable: Stefan Mecking, chemist at the University of Konstanz, and his research group present a new material.

    https://www.biooekonomie-bw.de/en/articles/pm/strong-and-biodegradable
  • Project BW2Pro - 29/08/2022 Luftbild Bioabfallvergärungsanlage Backnang-Neuschöntal

    Biowaste to Products: biorefinery transforms biowaste into new products

    In 2020, Germany’s population collected over 5 million tonnes of biowaste. Most of this was composted, and some was fermented into biogas. Scientists in Baden-Württemberg think there's room for more. Within the project ‘Biowaste to Products’ (BW2Pro) they want to transform biowaste into new products in a biorefinery. The idea is to produce biodegradable plant pots, mulch material, fertilisers, enzymes and biobased plastics in addition to…

    https://www.biooekonomie-bw.de/en/articles/news/biowaste-products-biorefinery-transforms-biowaste-new-products
  • Press release - 26/07/2022

    Lavender cultivation on the Swabian alb: Essential oil and textiles from plant residues

    In Provence, the lavender fields are in full bloom again. This blaze of color may soon also be seen in Baden-Württemberg. In a joint research project, the German Institutes of Textile and Fiber Research Denkendorf (DITF), the University of Hohenheim and the company naturamus are testing suitable lavender varieties and developing energy-efficient methods for producing essential oil from them.

    https://www.biooekonomie-bw.de/en/articles/pm/lavender-cultivation-swabian-alb-essential-oil-and-textiles-plant-residues
  • Press release - 13/01/2022

    Turning harmful CO2 into useful chemicals

    Making important raw materials for fine chemicals out of carbon dioxide really works. As part of the Max Planck collaborative project eBioCO2n, a team of researchers from Fraunhofer IGB have successfully performed a first ever fixation of CO2 via a multi-enzyme enzyme reaction driven by electricity yielding a prospective intermediate for the chemical industry. The process for electro-biocatalytic CO2 fixation was recently published and is…

    https://www.biooekonomie-bw.de/en/articles/pm/turning-harmful-co2-useful-chemicals
  • Climate-friendly circular economy - 11/11/2021 Chemical plant in the laboratory with pumps, tubes and equipment for electrolysis.

    CO2 from the air as a raw material for chemicals

    A Fraunhofer team has successfully produced a dye using CO2 adsorbed from the air. The aim is to move towards a climate- and resource-friendly circular economy. Chemicals, as well as fuels, can be produced cost-effectively using this process. How does the technical process work, and what opportunities does it open up?

    https://www.biooekonomie-bw.de/en/articles/news/co2-air-raw-material-chemicals
  • Press release - 01/10/2021

    Crucial step identified in the conversion of biomass to methane

    Researchers find the enzymatic link in the formation of methane from fatty acids by cooperating microorganisms. Microbial production of methane from organic material is an essential process in the global carbon cycle and an important source of renewable energy. This natural process is based on a cooperative interaction between different types of microorganisms: the fermenting bacteria and the methane-producing archaea.

    https://www.biooekonomie-bw.de/en/articles/pm/crucial-step-identified-conversion-biomass-methane
  • Press release - 02/08/2021

    CO2 as a raw material for plastics and other products

    Carbon dioxide is one of the main drivers of climate change – which means that we need to reduce CO2 emissions in the future. Fraunhofer researchers are highlighting a possible way to lower these emissions: They use the greenhouse gas as a raw material, for instance to produce plastics. To do this, they first produce methanol and formic acid from CO2, which they convert via microorganisms into building blocks for polymers and the like.

    https://www.biooekonomie-bw.de/en/articles/pm/co2-raw-material-plastics-and-other-products
  • Press release - 08/02/2021

    Water-repellent and more: coating textiles sustainably with chitosan

    Textiles can be coated with the biopolymer chitosan and thus made water-repellent by binding hydrophobic molecules. The good thing is that this can also replace toxic and petroleum-based substances that are currently used for textile finishing. In the last few years Fraunhofer IGB and partners have developed technology to provide fibers with the desired properties using biotechnological processes and chitosan.

    https://www.biooekonomie-bw.de/en/articles/pm/Water-repellent-and-more-coating-textiles-sustainably-with-chitosan
  • Press release - 21/12/2020

    How Do We Want to Run Our Economy and Production?

    The wastewater treatment plant is turned into a vegetable farm, bio-based substances recovered from waste are being utilized to prevent oxidative spoilage in food packaging or provide environmentally-friendly and safe water-repellent coatings on functional textiles. In the EVOBIO project coordinated by Fraunhofer IGB, 19 Fraunhofer Institutes are working on solutions for a sustainable economy.

    https://www.biooekonomie-bw.de/en/articles/pm/How-Do-We-Want-to-Run-Our-Economy-and-Production
  • Press release - 19/08/2020

    Value creation by combining electrochemistry with biotechnology

    Time for climate protection is pressing. One approach to tackle this challenge is to use the greenhouse gas CO2 as a raw material for chemicals. The researchers of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, together with partners from science and industry, were able to produce a value-added terpenoid dye from CO2 adsorbed from air by a combination of electrochemical and biotechnological conversion.

    https://www.biooekonomie-bw.de/en/articles/pm/farbstoffe-aus-atmosphaerischem-co2
  • Press release - 13/05/2020

    Microbial Cyborgs: Bacteria Supplying Power

    Electronic devices are still made of lifeless materials. One day, however, “microbial cyborgs” might be used in fuel cells, biosensors, or bioreactors. Scientists of Karlsruhe Institute of Technology (KIT) have created the necessary prerequisite by developing a programmable, biohybrid system consisting of a nanocomposite and the Shewanella oneidensis bacterium that produces electrons.

    https://www.biooekonomie-bw.de/en/articles/pm/mikrobielle-cyborgs-bakterien-als-stromlieferanten
  • Press release - 01/02/2019

    Novel unusual sugar from cyanobacteria acts as natural herbicide

    Chemists and microbiologists at Tübingen University discover sugar molecule that inhibits the growth of plants and microorganisms and is harmless to human cells ‒ An alternative to controversial glyphosate?

    https://www.biooekonomie-bw.de/en/articles/pm/novel-unusual-sugar-from-cyanobacteria-acts-as-natural-herbicide
  • Article - 30/01/2019 Photo of Sven Benson.

    candidum – computer-assisted enzyme design

    Industry has been using enzymes for over a hundred years. While it initially had to content itself with natural enzymes, it is now increasingly possible to design tailor-made biocatalysts with specific properties. The start-up company candidum GmbH from Stuttgart promises to achieve this faster than ever before - mostly thanks to accelerated virtual screening.

    https://www.biooekonomie-bw.de/en/articles/news/candidum-computer-assisted-enzyme-design
  • Press release - 19/07/2018

    Fraunhofer CBP supplies lignin for biobased materials

    Using ultrapure lignin from the lignocellulosic biorefinery at the Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna, researchers at the Technical University of Hamburg-Harburg (TU HH) have produced lignin-containing aerogels and processed high-porosity insulating boards with excellent insulation properties. The lignin was recovered from beech residual wood at the Fraunhofer CBP using the Organosolv process.

    https://www.biooekonomie-bw.de/en/articles/pm/fraunhofer-cbp-supplies-lignin-for-biobased-materials
  • Article - 04/12/2017 Modified wettability: coloured water droplets on hydrophobic textile.

    Textiles: water-repellent thanks to fungal proteins

    Outdoor lovers and athletes love them: water-repellent jackets and trousers. However, many consumers are unaware that the chemicals used to functionalise the textile surface often pollute the environment. Organic fluorine compounds (perfluorocarbons = PFC) are usually added to textiles to make them water-repellent. Scientists at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB and the Hohenstein Group are researching an…

    https://www.biooekonomie-bw.de/en/articles/news/textiles-water-repellent-thanks-to-fungal-proteins
  • Article - 13/09/2017 Prof. Kazda and three members of his research group standing in front of the laboratory biogas plant in which the methane content and process parameters are measured in relation to different feeding practices.

    Flexible biogas plant operation – new concepts for stabilising bioenergy provision

    The lack of flexibility with regard to peak demand for electricity – both for consumers and producers – is a well-known problem as far as the production of electricity from renewable resources is concerned. Biogas plants present a particular challenge due to the complex and relatively slow microbial processes involved. A research project called FLEXIZUCKER at the Universities of Ulm and Göttingen aims to make biogas production more flexible and…

    https://www.biooekonomie-bw.de/en/articles/news/flexible-biogas-plant-operation-new-concepts-for-stabilising-bioenergy-provision
  • Process engineering - 17/05/2017 Different types of sausages.

    Enzymes help save costs and protect the environment

    The Biopolymers/Biomaterials cluster was one of five clusters that won the BioIndustry 2021 competition in 2007 and that received funding from the German Federal Ministry of Education and Research (BMBF). The cluster’s ”Biotechnological process development for novel membranes based on collagen” research project was funded by the BMBF from 1st February 2013 to 31st January 2016. The project involved four companies and one university and aimed at…

    https://www.biooekonomie-bw.de/en/articles/news/enzymes-help-save-costs-and-protect-the-environment
  • Dossier - 20/03/2017 The photo shows tree trunks piled up along the road. The wood processing plant in the city of Buchenbach can be seen in the background.

    Lignin – a natural resource with huge potential

    Petroleum is the lifeblood of the chemical industry. It is the raw material for basic chemicals and is used to produce a tremendous wealth of products. Growing demand and dwindling resources mean that the chemical industry is increasingly focusing on renewable resources. Lignin is a wood component that is proving to be a particularly promising resource. It is currently almost exclusively used for generating energy, although it could also be used…

    https://www.biooekonomie-bw.de/en/articles/dossiers/lignin-a-natural-resource-with-huge-potential
  • Article - 12/09/2016 Pile of crustacean shells in the yard of a seafood company.

    Valuable new biopolymers from crustacean shells

    In the EU alone, more than 250,000 tons of seashell waste are discarded every year. The exoskeleton of crustaceans consists of proteins, calcium carbonate and chitin, a long-chain sugar molecule which could be used to produce valuable building blocks for the polymer industry. Scientists from the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) in Stuttgart have developed a biotechnological process aimed at a sustainable…

    https://www.biooekonomie-bw.de/en/articles/news/valuable-new-biopolymers-from-crustacean-shells
  • Article - 15/03/2016 The photo shows the basic material (HMF) and the products that can be produced from HMF.

    Chicory root and its potential in bioplastics production

    Researchers from the University of Hohenheim use waste in the form of chicory roots to extract basic chemical building blocks for producing nylon and plastics. Hydroxymethylfurfural (HMF) is one of 12 platform chemicals used to produce plastics. The raw material obtained from the chicory root improves the plastics’ environmental performance, notably because it is an oil substitute and does not compete in any way with food production.

    https://www.biooekonomie-bw.de/en/articles/news/chicory-root-and-its-potential-in-bioplastics-production
  • Article - 30/11/2015 The figure shows a model of the active centre of MccA.

    Bacterial MccA is better than other enzymes when it comes to reducing sulphites

    Dr. Bianca Hermann from the University of Freiburg specialises in multi-haem enzymes, and investigates the enzymes’ structure and reaction mechanisms. She has clarified the enzymes’ crystal structure and reaction mechanisms and found out why the bacterial MccA enzyme complex can reduce sulphur-containing substances such as sulphites up to a hundred times faster than other enzymes.

    https://www.biooekonomie-bw.de/en/articles/news/bacterial-mcca-is-better-than-other-enzymes-when-it-comes-to-reducing-sulphites
  • Article - 11/11/2015 Three-dimensional representation of the active centre of the Geobacter enzyme.

    A metal enzyme that can cleave benzene rings

    Aromatic rings are extremely stable and very difficult to break apart. Prof. Dr. Matthias Boll from the University of Freiburg’s Faculty of Biology and his team work with Geobacter metallireducens, a bacterium that can completely degrade aromatic compounds under strictly anaerobic conditions. While the biological degradation of aromatic hydrocarbons is of global relevance, the chemical resulting from the reduction of benzene rings could also be…

    https://www.biooekonomie-bw.de/en/articles/news/a-metal-enzyme-that-can-cleave-benzene-rings
  • Article - 04/05/2015 Photo of Prof. Dr. Sybille Ebert, professor of bioprocess engineering, Industrial Biotechnology, Biberach University of Applied Sciences<br /> <br />

    Bioprocess engineering: Sybille Ebert to teach key biotechnological skills

    Every single biotechnological production process is tested in shake flasks before it is gradually scaled up to eventually produce tons of platform chemicals or biofuels in cubic-metre sized fermenters. Prof. Dr. Sybille Ebert teaches the theory and practice of bioprocess engineering in the form of lectures and practical laboratory exercises to students at the Biberach University of Applied Sciences. The trained chemist and mathematician was…

    https://www.biooekonomie-bw.de/en/articles/news/bioprocess-engineering-sybille-ebert-to-teach-key-biotechnological-skills
  • Article - 30/03/2015 The figure shows the metal centre of the nitrogenase enzyme and the site where carbon monoxide binds.<br />

    Nitrogenases: magicians that convert carbon monoxide into hydrocarbons

    Rhizobia soil bacteria live in symbiosis with legumes and are masters of ammonia synthesis thanks to an enzyme called nitrogenase. Prof. Dr. Oliver Einsle from the Institute of Biochemistry at the University of Freiburg is studying how the enzyme accomplishes this energy-intensive process and why it sometimes also converts other compounds with an amazing result. Einsle elucidated a mechanism by which the enzyme converts toxic carbon monoxide into…

    https://www.biooekonomie-bw.de/en/articles/news/nitrogenases-magicians-that-convert-carbon-monoxide-into-hydrocarbons
  • Article - 12/01/2015 The photo shows a schematic that shows how a newly created protein is produced in E. coli. This protein forms new organelles. The figure also shows a microscopic image of the process.

    Bionic chemistry: developing tailor-made functional units for bacterial cells

    Dr. Stefan Schiller from the Center for Biological Systems Analysis (ZBSA) at the University of Freiburg combines synthetic biology and synthetic chemistry concepts in order to equip bacterial cells with organelle-like compartments. He has countless biotechnological applications in mind. In 2014, Schiller received the research prize “Next Generation of Biotechnological Methods – Biotechnology 2020+”. The prize is awarded every two years and…

    https://www.biooekonomie-bw.de/en/articles/news/bionic-chemistry-developing-tailor-made-functional-units-for-bacterial-cells

Page 1 / 4

sb_search.block.search_result.other.pages

  • 1
  • 2
  • 3
  • 4
  • eine Seite zurück
  • Extend search to all portals
  • Search the Healthcare industry database
  • Search the Research institutions
Search terms
Portal
Information type
  • Type
    Event date
    From
    To
  • Type
  • Publication date
    Topics
    Topics
  • Publication date
Reset

Footer navigation

  • Bioeconomy in BW
    • What is a bioeconomy?
    • Bioeconomy in BW
    • Bioeconomy stakeholders in BW
  • Articles
    • News
    • Press releases
    • Dossiers
    • Biobased resources
    • Bioenergy
    • Materials and chemicals
    • Politics, ethics & economy
    • Environmental analytics
    • Publications
  • Events
  • Databases
    • Funding
    • Research institutions
  • BIOPRO services
    • Information channels
    • Contacts
    • BIOPRO services and offers
  • Project pages
    • Telemedicine BW
    • MDR & IVDR
  • Portals
    • BIOPRO BW
    • Healthcare industry
    • Bioeconomy
  • To top

stay informed

Subscribe to newsletter

Social Media

  • Xing
  • Twitter
  • LinkedIn
  • Rss
  • Privacy statement
  • Legal notice
  • Sitemap
  • Contact
© 2023
Website address: https://www.biooekonomie-bw.de/en/search