Jump to content
Powered by

Materials and chemicals

Biomass can be used to produce chemicals, fibres, pigments and plastics. These products are either identical to their petroleum-based counterparts or have completely new properties. Biorefineries will play a key role in the transition to a bioeconomy. There is great expectation placed on the potential ability to convert the countless carbon compounds in biomass into chemicals and material components.

  • Article - 19/03/2012

    An ever-growing number of genomes of soil bacteria of the genus Streptomyces are being sequenced. Using a method known as “genome mining”, researchers at the University of Tübingen are working on the identification of gene clusters that have the potential to be used in industrial biotechnology for the production of new antibiotics and other pharmaceutically active substances. To achieve this, the biosynthesis gene clusters are integrated into…

  • Article - 13/02/2012

    Mosses are a great source of molecules that offer protection against microorganisms dehydration and other stress factors but it is a potential that has yet to be fully exploited. Freiburg-based Emcid Biotech GmbH is developing a platform for the identification development and industrial production of natural substances and enzymes of lower plants in particular those of mosses.

  • Article - 06/02/2012

    The results of the feasibility studies funded under the Idea Competition in Biotechnology and Medical Technology were presented in the Haus der Wirtschaft in Stuttgart between 16th and 18th January 2012. Ten of the 42 project ideas were recommended for further funding.

  • Article - 19/01/2012

    Alternative engines and fuels for cars of the future still lack technical maturity and are not yet competitive. In the short to medium term, the only way to replace fossil fuel will be other fossil fuels – compressed natural gas (CNG) and liquid petroleum gas (LPG). Biodiesel and ethanol are and will remain for the foreseeable future the only renewable resource alternatives to fossil fuel. As is the case for any other technology, the development…

  • Article - 14/11/2011

    It is difficult to believe that unicellular organisms such as archaea and bacteria can have developed sophisticated strategies to fight off foreign nucleic acids. However, many of these tiny organisms actually possess a virus defence mechanism known as CRISPR/Cas. Compared to this defence mechanism, protective mechanisms such as restriction and modification appear extremely clumsy indeed.

  • Article - 29/06/2011

    Bernhard Eikmanns prefers not to get involved in research that will end up on bookshelves. So it was an easy decision for the biologist to drop the research he was doing into bacteria that are difficult to cultivate during his doctoral studies and concentrate instead on Corynebacterium glutamicum, a bacterial species that is much easier to cultivate. Corynebacterium glutamicum is an excellent object for scientific research and industrial…

  • Article - 31/01/2011

    The Institute of Biochemical Engineering at Technische Universität Braunschweig (Technical University (TU) Braunschweig) is a member of the Biopolymers/Biomaterials cluster and, as such, is involved in two projects to produce diaminopentane and succinic acid using optimised microorganisms with the aim of establishing a basis from which to provide industry with new materials made from renewable resources.

  • Article - 06/12/2010

    All washing agents and household detergents contain surface-active agents that bind and dissolve dirt. Up until now these agents have been produced from organic compounds extracted from mineral oil. Due to the ongoing debate on sustainability more and more manufacturers are focusing on biological alternatives. The research group led by Dr. Rudolf Hausmann at the Karlsruhe Institute of Technology KIT is investigating the conditions under which…

Website address: https://www.biooekonomie-bw.de/en/articles/materials