Innovative materials - 14/06/2023 Reinventing ‘wood’ with programmable bacteria Conserving wood by producing furniture and other objects from wood-based materials with the help of microorganisms? That is exactly what a team of researchers from the University of Freiburg and the Leibniz Institute for New Materials (INM) in Saarbrücken is working on in the DELIVER project. The aim is to create a database of materials with a broad range of controllable properties for various applications that can be produced from wood waste.https://www.biooekonomie-bw.de/en/articles/news/reinventing-wood-programmable-bacteria
Residual materials with potential - 16/03/2023 PeePower™ – energy from urine The objective of the PeePower™ BUGA 2023 collaborative research project is to produce green hydrogen and platform chemicals from wastewater. This fits in nicely with BUGA 2023’s (German National Garden Show) four major themes, namely, climate, energy, environment and food security.https://www.biooekonomie-bw.de/en/articles/pm/peepower-energy-urine
Synergistic effects with microalgae and purple bacteria - 03/02/2023 Working towards a hydrogen economy with a wastewater biorefinery: the SmartBioH2-BW project A biorefinery that uses industrial wastewater and residual material streams is being built in Rheinfelden (Baden). It will have two interlinking bioreactors and will synthesize biohydrogen as well as organic basic materials such as carotenoids and proteins. SmartBioH2-BW is a pilot project run by the Urban and Industrial Biorefineries initiative and funded by the Baden-Württemberg Ministry of the Environment, Climate Protection and Energy Sector.https://www.biooekonomie-bw.de/en/articles/news/working-towards-hydrogen-economy-wastewater-biorefinery-smartbioh2-bw-project
Mini-factories for producing bioplastics - 05/05/2022 Bacteria produce bioplastics: resource-saving and very environmentally friendly Using living cells as mini-factories to produce plastic from nothing more than water, sunlight and carbon dioxide; plastic that is also 100 percent degradable – it sounds far-fetched but it actually works: researchers at the University of Tübingen have genetically engineered cyanobacteria so that they fill their cells to the brim with polyhydroxybutyrate. The researchers are now turning the idea into reality with the development of pilot plants.https://www.biooekonomie-bw.de/en/articles/news/bacteria-produce-bioplastics-resource-saving-and-very-environmentally-friendly
Lentil cultivation and cleaning on the farm - EIP-AGRI Rhizo-Linse project - 16/03/2022 Lentils return to the Heckengäu region Lentils are among the oldest crop plants in Central European agriculture and were once a popular food in ancient Egypt, Persia and Mesopotamia. The legume was widespread in Germany until the mid-20th century, but has since disappeared completely from farmers’ fields. Over the past decade, lentils have reappeared as a crop grown locally and are cultivated in harmony with nature.https://www.biooekonomie-bw.de/en/articles/news/lentils-return-heckengaeu-region
Further utilisation of plant residues - 25/11/2021 Novel fibre composite made from hop fermentation residues Biogas plants produce energy-rich gas by fermenting biomass. This process generates both liquid and solid fibrous and particulate fermentation residues. Researchers at the German Institutes of Textile and Fibre Research (DITF) have now managed to create a resistant and water-repellent fibre composite material from solid hop residues that can be used as a veneer to coat wood panels.https://www.biooekonomie-bw.de/en/articles/news/novel-fibre-composite-made-hop-fermentation-residues
Climate-friendly circular economy - 11/11/2021 CO2 from the air as a raw material for chemicals A Fraunhofer team has successfully produced a dye using CO2 adsorbed from the air. The aim is to move towards a climate- and resource-friendly circular economy. Chemicals, as well as fuels, can be produced cost-effectively using this process. How does the technical process work, and what opportunities does it open up?https://www.biooekonomie-bw.de/en/articles/news/co2-air-raw-material-chemicals
Press release - 01/10/2021 Crucial step identified in the conversion of biomass to methane Researchers find the enzymatic link in the formation of methane from fatty acids by cooperating microorganisms. Microbial production of methane from organic material is an essential process in the global carbon cycle and an important source of renewable energy. This natural process is based on a cooperative interaction between different types of microorganisms: the fermenting bacteria and the methane-producing archaea.https://www.biooekonomie-bw.de/en/articles/pm/crucial-step-identified-conversion-biomass-methane
Degradable biopolymers - 29/05/2020 Bioplastics make wood cycles more sustainable Innovative technologies and bacteria can transform wood residues into sustainable bioplastic packaging. Before bioplastics are broken down into CO2 and water in an environmentally friendly way, they can thus lead lives as products in the cosmetics industry, for example.https://www.biooekonomie-bw.de/en/articles/news/bioplastics-make-wood-cycles-more-sustainable
Dossier - 23/07/2012 Extremophilic bacteria What causes stress for some, actually speeds others like extremophilic bacteria up. They love it hot, sour or salty, toxic substances like heavy metals also do them good and even give them energy. As molecular and systems biology techniques get better and better, industry is also becoming increasingly interested in these exotic organisms. What potential does knowing the biochemistry of extremophilic bacteria have for the pharmaceutical, cosmetics…https://www.biooekonomie-bw.de/en/articles/dossiers/extremophilic-bacteria